Rare Event Analysis of High Dimensional Building Operational Data Using Data Mining Techniques

نویسندگان

  • Cheng Fan
  • Fu Xiao
  • Shengwei Wang
  • Cheng FAN
  • Fu XIAO
  • Shengwei WANG
چکیده

Today’s building automation systems (BASs) are becoming increasingly complex. A typical BAS usually stores hundreds of sensor measurements and control signals at each time step, which produces massive high dimensional data sets. Traditional analysis methods for BAS data only focus on a small subset of the data, resulting in a huge information loss. Data mining techniques are more effective in knowledge extraction of massive data. This study develops a holistic methodology for analyzing the high dimensional BAS data using advanced data mining techniques, with the aim of identifying rare events in building operation. Rare event analysis helps to identify atypical building operating patterns, detect and diagnose faults, and eventually improve the building operational performance. Two main challenges exist in performing rare event analysis of massive building operational data, i.e. the high data dimensionality and the complexity in building system operation. The former results that the conventional analytics, such as distance-based measures, lose their effectiveness, and the later negatively influences the robustness and reliability of the identification of rare events. The proposed method is specially designed to tackle these challenges by integrating the power of data mining techniques. It consists of four main steps, i.e., data preparation, rare event detection, rare event diagnosis, and post-mining. The methodology is adopted to analyze the BAS data of the tallest building in Hong Kong. Rare events are successfully detected and diagnosed, providing clues to enhance building operational performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Smoke Emission from Fires in High-Rise Buildings Using the 3D Model Generated from 2-Dimensional Cadastral Data

Having a 3-Dimensional model of high-rise buildings can be used in disaster management such as fire cases to reduce casualties. The fundamental dilemma in 3D building modeling is the unavailability of suitable data sources. However, available cadastral 2D maps could be used as low-cost and attainable resources for 3D building modeling. Smoke will be a great threat to people's health during a f...

متن کامل

A Comparison of Rule based and Distance Based Semantic Video Mining

In this paper, a subspace-based multimedia data mining framework is proposed for video semantic analysis, specifically video event/concept detection, by addressing two basic issues, i.e., semantic gap and rare event/concept detection. The proposed framework achieves full automation via multimodal content analysis and intelligent integration of distance-based and rule-based data mining technique...

متن کامل

Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

متن کامل

Intrusion Detection System Using Data Mining Technique

This paper analysis and criticizes the way of using, functioning the intrusion detection system in data mining. Understanding the techniques. data mining approach such as intrusion detection system using association datasets where as in event correlation data mining method we will maintain. traffic analysis and anomaly intrusion detection systems are needed. log data by using a knowledge discov...

متن کامل

Automated detection of coronavirus disease (COVID-19) by using data-mining techniques: a brief report

Background: The clinical field has vast sick data that has not been analyzed. Discovering a way to analyze this raw data and turn it into an information treasure can save many lives. Using data mining methods is an efficient way to analyze this large amount of raw data. It can predict the future with accurate knowledge of the past, providing new insights into disease diagnosis and prevention. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014